
Journal o f  Statistical Physics, Vol. 23, No. 5, 1980 

Response Function Theory for 
Far-from-Equilibrium Statistical Systems 

Roberto Luzzi  1 and Aurea R. Vasconcellos 1 

Received August 5, 1979; revised December 18, 1979 

A formalism to determine the response function of a sample in conditions far 
from thermal equilibrium is presented. It consists in a generalization of scattering 
theory coupled to the statistical theory of irreversible processes, the non- 
equilibrium statistical operator method, developed by Zubarev. The scattering 
cross section is expressed in terms of double-time correlation functions, which 
are related to appropriate nonequilibrium thermodynamic Green's functions. The 
latter are also used to treat generalized transport equations, and, as an 
illustration, the method is applied to the study of the time-resolved Raman 
spectroscopy of a photoexcited semiconductor plasma. 
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1, I N T R O D U C T I O N  

K u b o  (1) has  po in t ed  out  tha t  "s ta t i s t ica l  mechanics  o f  non- l inear  non-  
equi l ibr ium p h e n o m e n a  is jus t  in its in fancy ,"  and  tha t  " f u r t h e r  progress  
can only  be hoped  by  close coope ra t i on  with exper iments . "  In  the descr ip t ion  
o f  physical  measurements  cor re la t ion  funct ions  p lay  an i m p o r t a n t  and  
inevi table  role. (2) F o r  systems devia t ing  sl ightly f rom t h e r m o d y n a m i c  equil ib-  
r ium, exact  c losed expressions for  the response  funct ions  o f  the systems can be 
ob ta ined  in the fo rm of  cor re la t ion  funct ions  at  equi l ib r ium (the f luctuat ion-  
d i ss ipa t ion  theo rem in the l inear  a p p r o x i m a t i o n  in external  forces)/3) The 
response theory  o f  equi l ib r ium system is  in t imate ly  re la ted to the Green ' s  
funct ion fo rmal i sm of  Bogo l iubov  and  Tyab l ikov ,  as descr ibed in the a l ready  
classic pape r  by Z u b a r e v  ~4a) (see also Refs. 4b and  13). The actual  ca lcula t ion  
may  be difficult for  the case o f  in terac t ing  m a n y - b o d y  systems, but  it is 
fo rmal ly  c losed a t  this level. 
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However, measurements may be performed on systems which can depart 
strongly from equilibrium. One may ask if, in these conditions, it is also 
possible to construct a closed macroscopic description of the system which 
can be adequate for a class of physical experiments. The response of highly 
excited systems to external perturbations involves the participation of non- 
equilibrium distributions of elementary excitations, and to provide a 
formalism to evaluate the response function for such cases is the object of the 
present study. 

Clearly, to deal with this question we should need to resort to some 
treatment of nonequilibrium statistical thermodynamics in order to describe 
the macroscopic state of the sample. There exists several methods to describe 
macroscopic processes that occur in nonequilibrium systems with a large 
number of degrees of freedom. Among them is the statistical approach based 
on the use of distribution functions derived by the ensemble method initiated 
by Gibbs for systems in equilibrium. Zubarev's method ~5) belongs to this 
kind of approach, and it seems offer a closed-off formalism in the theory 
of irreversible processes adequate to deal with a large class of experimental 
situations. It provides a macroscopic description for systems away from 
thermal equilibrium whose evolution is described by a statistical operator 
which includes nonlinear, nonlocal, and retardation effects. It should be 
stressed that the method is not restricted to situations when the system 
deviates only slightly from equilibrium (the linear domain), but it can treat 
systems far from thermal equilibrium. Further, the method permits the 
recovery of the results of nonequilibrium nonlinear thermodynamics. ~6) The 
formalism developed by Zubarev consists in obtaining nonequilibrium 
statistical operators through a generalization of the Gibbsian method, using 
dynamical conservation laws. It is based on Bogoliubov's idea that a 
contracted description of nonequilibrium statistics may be possible if the 
system, in its approach to equilibrium, can be characterized by a hierarchy 
of relaxation times of quite different orders of magnitude. (7) Zubarev's 
method has been extensively applied to the study of a number of non- 
equilibrium statistical problems, 2 and it is briefly reviewed in Section 3. 

In Section 2, to obtain the response function ofnonequilibrium statistical 
systems (NESS) to external perturbations, e.g., scattering cross sections, 
emission spectra, etc., we evaluate the rate of transition probabilities, 
governed by the interaction potential, using Landau's density matrix 
approach. (9) An ensemble average of the density matrix of the nonequilibrium 
system is introduced using the hypothesis that there exists a macroscopic 
contracted description of the state of the system in terms of a small number 
of macroscopic variables, the mean values of a certain restricted set of physical 

2 See the references in Zuba rev  (5) and,  for more  recent  work ,  Refs. 8. 
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quantities, whose time dependence reflects the evolution of the non- 
equilibrium statistical system. Similar to the equilibrium case, the transition 
probability can be written in terms of time correlation functions, with 
averages over the nonequilibrium statistical ensemble. The formalism is 
closed with the choice of Zubarev's distribution function to specify the 
ensemble average. 

The calculation of correlation functions of the nonequilibrium many- 
body system could be handled through the introduction of appropriate 
Green's functions, which are defined in Section 4 as a natural generalization 
of the thermodynamic double-time Green's functions of Ref. 4. However, 
in contrast to the equilibrium case, the equations for the Green's functions 
are not closed in themselves, but they are coupled to the set of dynamic 
equations for the macroscopic variables on which the NESS depends. We 
relate the response function ofa NESS to the nonequilibrium thermodynamic 
Green's functions (NET GF), i.e., the generalization of the fluctuation- 
dissipation theorem. Further, we establish the connection of the generalized 
transport equations of the Zubarev method (the dynamic equations for the 
macroscopic variables) and the NET GF. An application to the study of the 
evolution of a coupled system ofphonons and a highly excited semiconductor 
plasma, the latter being probed by means of time-resolved Raman spectros- 
copy, is presented in Section 4. 

2. FORMAL THEORY OF SCATTERING FOR NESS 

In this section we consider the response of a nonequilibrium statistical 
system to an external perturbation. 

Consider a NESS whose coordinates are designated by q, interacting 
with other systems (the set of which we call the thermal bath, of coordinates 
Q), and coupled to an external probe (coordinates x). 

We write for the total Hamiltonian 

H(q, Q, x) = H~(q) + HB(Q) + W(q, Q) + He(x ) + V(q, x) (1) 

where Ho is the system Hamiltonian, H B is the thermal bath Hamiltonian, 
Wis the interaction energy between the system and the bath, Hp is the external 
probe Hamiltonian, and V is the interaction energy between the system 
and the external probe. Furthermore, we introduce the notation [kt) and 
[p) for the eigenfunctions of the system and thermal bath and external probe, 
respectively, and Hv[p) = he)pip) and (H~ + H B + W)[p) = E.[p). 

Given the total wave function at time to, W(to), the solution of 
Schr6dinger equation at time t is 

ug(t) = U(t, to)Ud(to) (2) 
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with U satisfying the equation 

ih OU(t, to)/Ot = HU( t ,  to), U(t0, to) = 1 (3) 

Following well-known procedures in scattering theory, C1~ the time 
dependence associated with the unperturbed er~ergy operator is first removed 
by introducing the operator U' defined by 

U(t, to) = Uo(t, to)U'(t,  to) (4) 

where 

with 

Uo(t, to) = exp[(1/ ih)( t  - to)Ho] (5) 

(6) H o = H - V  
U' satisfies the equation 

ih CU'(t, to)/at = 17(t)U'(t, to) (7) 
where 

~(t)  = ~o + (t, to) VVo(t ,  to) (8) 

Equation (7) possesses the iterated solution 

Z ( 1 ) " f t t  ft t"-I U'(t,  to) = ih dt I "" dt .  if(t1)"'" 17(t.) (9) 
n = O  0 0 

Fixing the scattering channelp' ~ p, we obtain the transition probability 
at time t from state qS(to): 

ep,~p(t)  = ~ I(FlU'vp,(t, to)ltP(to) )t z (10) 
IL 

where 0 = (P ' I~ )  and U'pp, = ( p I U ' I p ' ) .  For simplicity we henceforth drop 
the indexes p and p'. 

Equation (10) can be written alternatively 

1 ~ dt" P~(t) = -~i dt' { e x p [ - i o o ( t "  - t ' ) ] } ( O ( t o ) l ~ + ( t " ) ~ ( r ) l O ( t o ) )  (11) 
0 0 

where c o - - c o p -  COp, is the energy transfer in the scattering event, 17 = 
(P1171P'), and the scattering operator ~ is defined by 

~( t )  = ~(t) 1 + ~ dC ~(C) (12) 
o 

Using Eq. (2), we can write Eq. (11) as 

f F/ Po~(t) = ~ dt' dt" dQ {[Uo+(q, Q; t", t').~+(0) 
, ) t o  o 

x Uo(q, Q; t", t ' )~(O)p(qQ,  q 'Q'; t ' )]  e-i~ Q, (13) 
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where we have defined the density matrixlg) 

p(qQ, q'Q' ; t') = ~k(q, Q; t')O*(q', Q' ; t') (14) 

At this point we define a nonequilibrium ensemble average, introducing 
the hypothesis that there exists a contracted description of the macroscopic 
state of the NESS in terms of  a small number of macrovariables, in a 
way to be made more precise in next section. Further, however, the transition 
probability of Eq. (13) contains the interaction potential to all orders, i.e., 
it is not confined to a purely linear response; we are restricting the 
conditions of applicability of  our treatment to situations when the inter- 
action with the probe produces thermal perturbations that can be neglected 
in comparison with those already present in the highly excited prepared 
sample. 

Taking the ensemble average in Eq. (13) and introducing the NESS 
p(t) defined by 

(p(qQ,  q'Q'; t)).v = (qQlp(t)[q'Q')  (15) 

it follows that 

ff' 1 ~ dt" e -i~176 t')~(O)p(t')} (16) (Po~(t))av = • dt' Sp{~+ (t " - 
o o 

where Sp stands for the trace of the operator within the curly bracket. The 
operators are now given in the Heisenberg representation of the unperturbed 
system, 

Finally, the rate of transition probability for the scattering process at 
time t is given by 

d 1 (~ 
w(tlco) = ~ (Po(t)),v = ~ dt' 

,]to 

e -i~o(~'-t) S p { ~  + (t' - t ) ~ ( O ) p ( t ) }  + c.c. 

(17) 

For equilibrium systems where p ( t ) = Z - l e  -pu, Eq. (17) reproduces 
well-known results for the temperature-dependent rate of transition prob- 
ability.~4b'11) 

Next we specify the nonequilibrium statistical operator p(t). 

3. THE NONEQUIL IBRIUM STATISTICAL DISTRIBUTION 

Zubarev's method is based on Bogoliubov's assertion that if there exists a 
relaxation time for microinformation ~, after which the system loses the 
memory of  the detailed initial distribution for t >> ~,, a randomization 
should occur, and a reduced number of variables is enough to describe 
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in a macroscopic way the state of the system. (7) The contraction of the 
initial distribution, the latter dependent on all degrees of freedom, is con- 
nected with the separation from the total Hamiltonian of strong interactions 
with certain symmetries. (12) These are related to the rapidly relaxing 
processes. 

Hence, for not too short times, i.e., t >> z,,  correlations with lifetimes 
smaller than z, can be ignored and the state of the system may be 
described by a reduced set of macroscopic variables (or macrovariables 
for short), say Ql(t),..., Qs(t), which are the average values over the non- 
equilibrium ensemble of a set of dynamical quantities P1 ..... Ps. Next an 
auxiliary statistical operator is defined, sometimes referred to as the quasi- 
equilibrium statistical distribution (QESD), pq(t, 0), as an idealized initial 
condition for the system after the randomization process has occurred, and 
from which the system evolves under dynamical laws governed by its 
Hamiltonian H. This means that at all times the NESS, which must 
satisfy Liouville-von Neumann equation, is a functional of pq. 

The QESD is chosen so as to make extremal the information entropy 
- l n  pq for given average values of the quantities Pro, thus yielding the 
generalized canonical-like distribution 

pq(t ,O)+exp[-(p(t)-~mFm(t)Pm], m = l , 2  ..... s (18) 

where qS(t) is given by the normalization c o n d i t i o n  S p { l q ( t  , 0)} = 1, and the 
set of Lagrange multipliers Fl(t  ) ..... Fs(t ) are parameters thermodynamically 
conjugate to the macrovariables Q in a sense to be defined later. Let us 
observe that the quantitie s Pm can be taken as densities of dynamical 
quantities, and therefore the state variables Qm(r, t) and thermodynamic 
parameters (now thermodynamic fields) Fm(r, t) are functions of position. 

Next the NESS corresponding to the initial value ( to-- - , -  oo) pq is 
defined as 

If l p~(t) = exp e dt' e"' In p~(t + t', t') = exp[:~, In pq(t, 0)] (19) 
oo 

with e going to +0  after the trace operation has been performed in the 
calculation of averages, and where the first term in the argument of p~ stands 
for the time dependence of the thermodynamic parameters F, whereas the 
second denotes the evolution of the parameters P under the action of the 
system Hamiltonian H (the Heisenberg representation), and the last identity 
defines the projection operator ~ (see Appendix). This statistical operator 
satisfies the Liouville equation with infinitesimal sources 

0 In P~ + 1 [ln PE, H I =  - e ( ln  p~ - In pq) (20) 
Ot m 
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We observe at this point that the NESS of Eq. (19) is completely equivalent 
to the one that can be defined as PE' = ~,pq.~5) 

Equation (19) defines the operation of projecting the QESD over the 
subspace of the retarded solutions of the initial value problem of the 
Liouville equation. These are the solutions that correspond to an increase in 
entropy, thus satisfying the second law of thermodynamics.~5) This is ensured 
by the presence of the infinitesimal source in Eq. (20), which also fixes the 
initial condition, breaking the time-reversal symmetry of the Liouville-von 
Neumann equation. Irreversibility is then associated with this symmetry- 
breaking, and the average of any physical quantity over the ensemble 
defined by distribution (19) is a quasiaverage in Bogoliubov's sense.~l 3) In this 
way invariance under time-reversal transformations is not satisfied for these 
quasiaverages because of the removal of the corresponding degeneracy in the 
Liouville equation. 

Except for the normalization condition, the parameters F are still open. 
To uniquely define them, an additional condition is imposed on the distri- 
bution p~ in the form 

Q,,(r, t) = Sp{P,,(r)p~(t)) ~ (Pm(r)lt) = (P,,(r)lt)q --- Sp{Pm(r)pq(t, 0)} (21) 

which guarantees the conservation of normalization in Eq. (19), and leads 
to the definition 

Q,,(r, t) = (P,,(r)lt) = (Pmlt)q = -6dp(t)/6F,,(r, t) (22) 

Equation (22) is the generalization of the concept of thermodynamic 
parameters ~14) to the nonequilibrium state; the nonequilibrium thermo- 
dynamic parameters (fields) F,, are said to be thermodynamically conjugate 
to the macrovariables Q,, in the sense established by Eq. (22), and a similar 
definition has been used, for different nonequilibrium distributions, by several 
authors~l 5-18) (see aiso Appendix). 

To make contact with thermodynamics a time-dependent entropy for 
systems away from equilibrium needs to be defined, and this is done by 
generalizing the Gibbs entropy for equilibrium using the auxiliary fields 
F,,(r, t) and the instant averages of Eq. (21), i.e., 

6e(t) = - (In pq(t, 0)It) = - (In pq(t, 0)lt)q (23) 

Using this definition, it can be proved ~5) that Zubarev's statistical method 
is compatible with generalized thermodynamics, ~6) and furthermore it 
provides us with the reciprocal of Eq. (22): 

Fro(r, t) = 65P(t)/6Q,,(r, t), m = 1, 2 ..... s (24) 

Next we consider the time evolution of the NESS, i.e., besides the 
thermodynamic equalities (22), one needs to write the generalized transport 
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equations (GTEq), i.e., the equations of motion for the nonequilibrium 
thermodynamic variables, By time differentiation of both sides of Eq. (21) one 
obtains 

dQm(t) d d ( 1  \ 
dt - dt (Pmlt>q = (Pr~lt) ~- ( P m l  t )  = ~ [Pro, H]It ) 

/ 

Further, 

where 

with 

(25) 

dQ,. bQ,. dF. -~ M.,.(t)P.(t) (26) 
dt - ~ bF,, dt - 

M~.(t) = 62c~(t)/bF.. 6F. =- (P.,, P.lt) = (AP,,, APolt)q (27) 

AP = f ]  due  -"s~''~ A P e  user'~ 

and 

AP = P - (Pit)q, 

S(t, 0) = - In  pq(t, O) = c~(t) + ~ F,~(t)Pm 
t t l  

Here, M is a correlation matrix, A is a generalized Kubo-like transform 
of the operator A, (a6) and S is the entropy operator. 

Equation (26) allows us to introduce kinetic equations for thermo- 
dynamic parameters F as 

dF=(t) 
d T  - ~ M~'"~(t)([~"[t) (28) 

n 

where 

M~,,~(t) = - 62S(t)/6Q,,(t) 6Q,(t) (29) 

is the inverse correlation matrix. The equations of evolution could be 
written, if convenient, in a mixed representation involving a part of quantities 
Q and a part of parameters F, e,g., as in the application described in 
Section 4. 

For systems deviating slightly from thermal equilibrium and in the linear 
approximation the results of the memory function method of Mori ~16) are 
retrieved319~ The GTEq (25) may be considered the average over the non- 
equilibrium ensemble of generalized Langevin equations, with definition (21) 
ensuring the cancellation of the rapidly varying random forces, i.e., producing 
the secularization of the state variables. 
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In summary, for systems governed by Hamiltonian dynamics, Zubarev's 
statistical method provides a way to describe the evolution and behavior 
of far-from-equilibrium systems through appropriate generalized transport 
equations. Their solutions are uniquely determined for given initial con- 
ditions, but since they are nonlinear equations, a branching point of 
solutions (2~ is apt to appear at a certain threshold in the intensities of the 
external sources that drive the system away from equilibrium. Beyond the 
instability an ordered pattern stabilizes, which has been termed a dissipative 
structure, and may be one of various spatiotemporal self-organizations. (21) 
The stability depends on the signature of the excess entropy production 
function for all fluctuations compatible with the equations of evolution, the 
Glansdorff-Prigogine stability criterion36) 

Closing this section, we observe that the set of dynamical quantities 
P,. is defined by the microscopic structure of the system itself, i.e., by the 
explicit form of its HamiltonianJ 12) Thus, the choice of the set of macroscopic 
variables is not universal, but it depends completely on a concrete problem. 
The modeling of a concrete problem amounts to a judicious choice of 
the variables and the form of the kinetic equations. The question of 
the completeness of the set of macrovariables has been discussed by 
Kalashnikov322) 

4. A GREEN'S FUNCTION F O R M A L I S M  FOR 
NONEQUIL IBRIUM STATISTICAL SYSTEMS 

As we have seen, either for the determination of response functions of 
the NESS or the study of its evolution, time-dependent correlation functions 
need to be calculated. A practical way to accomplish this consists in 
connecting them with appropriate thermodynamic Green's functions, and 
for this purpose in this section we briefly present a Green's function 
formalism to be used for the study of nonequilibrium statistical systems 
described by the nonequilibrium statistical operator of Section 3, which is a 
natural generalization of the equilibrium case described in Ref. 4. 

Consider two operators A(t) and B(t) in the Heisenberg representation. 
Using the nonequilibrium statistical operator of Eq. (19), we define a 
retarded Green's function 

G,(t, ~) = - i O ( - r ) S p { [ A ( r ) ,  B],pE(t)} (30) 

Here q = + stands for the anticommutator and t /=  - for the commutator 
of quantities A and B. 

We also define the nonequilibrium correlation functions 

FA~(t , ~) = Sp{A(v)Bp~(t)} = ~A(~)BIt) (31) 
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ff B~(t, z) = Sp{BA(z)p,(t)} = (BA(z)lt) 

Let In) be a complete set of eigenfunctions of H, the 
Hamiltonian. Then 

FAd(t:) = ~ (nlAlm) (mlBIl) (llp,(t)ln)e ~176 
I o n  

= do JA~(tlo)e iw~ 
oo 

The last equality defines the nonequilibrium spectral density 

JAB(tlo) = ~ h(nlAlm)(mlBll)(l[p.(t)ln) 3(ho - E. + E~) 

Similarly we obtain 

ff BA(t, r )=  ~ (n[Blm) (mlAll) ( llp.(t)ln)e (1/ih)'~e'-E~) 
l m n  

where 

= f~_~ do) KBA(tIo)e i~ 

K~A(tlO) = ~ h(n[Blm)<mlAI1)(l[p,(t)ln) 3(ho - E., + Ez) 
l m n  

The spectral densities J and K satisfy the relationship 

K*+.+(- o) = Ja~(o) 

Defining the Fourier transform 

Gn(tl~ = J_ ~ 27z G,(t, 

and using Eqs. (33), (35), and (30), one obtains 

G+(tlo) + G_(t[o) = f~-o~ 
do)' 

o - o'  + is 

G+(t[o) - G_(t[o) = I ~ 
do)' KBA(tkO') 

X O - - o ' + i s  

w i t h  s - +  + 0. 

(32) 

NESS 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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Furthermore, the equations of motion for the retarded Green's functions 
and its Fourier transforms are 

ih ~G,(t, ~) - h6(z)([A. B],]t) + ( ( [ A ( 0 .  H ] ;  Bit ) ) ,  (41) 
8r 

and 

-hcoG,(t[co) = - ~  ([A. B],lt) + ( ( [A .  HI ;Bi t .  co)) (42) 

where we have introduced the notations 

( ( A ( 0 ;  Bit)) ,  = G,(t. z) (43) 

( ( A ;  BIt , co)), = G,(tlco) (44) 

Because of  the equivalence of  the NESS obtained by taking the quasi- 
invariant part of either the auxiliary operator pq or the entropy operator 
In pq, as done here, (5'23) these Green's functions should coincide with those 
defined and studied by Kalashnikov. ~24) However, one difference must be 
stressed, which consists in the presence of  an additional damping-lik e factor 
e" in front of the retarded Green's function defined in Ref. 24. However, our 
final result will recover a factor e s~, with s ~ + 0, whose origin will be the 
adiabatic turning on of  the perturbation and not the adiabatic decoupling 
of  the system and reservoir of the Kalashnikov theory. 

Using the Green's function formalism just introduced, we can write the  

rate of  transition probability given by Eq. (17) l/Oj  
w(tlco) = ~ dr de)' e-i(~ ') + c.c. 

c o  - - o o  

i f~ J.+R(;Ico') 
- ~ de)'  co' + c.c.  c o -  + i s  

2~ 
- h2 Im{G+(t[co + is) + G_(tle) + is)} (45) 

where adiabatic application of  the perturbation at time to ~ - oe has been 
assumed, and where G,(trco) = ( ( ~ +  ; ~lt ,  co)),. 

For systems in equilibrium conditions described by the canonical 
ensemble, one retrieves the result (11) 

w(co) = (2re/h)(1 + qe -~~ Im G.(co + is) (46) 

where fl-1 is the reservoir temperature. Further, in situations when the 
parameters F,. vary slowly in time during intervals of time characteristic 
of the measurement that is being performed, the NESS is in a quasi-steady 
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state and, in a first approximation, one can take the F,, as constants, thus 
bypassing the solution of the complicated equation (28) and using them 
as phenomenological parameters. Under such restrictions the NESS becomes 

i In p, = q5 + ~ FmPm - ~ F, dt' e"'[~m(t ') (47) 
m m oo  

and the corresponding auxiliary distribution is 

phx=-Z~x 1 e x p ( - ~  FmPm)' Zhx = S p { e x p ( , ~  F,,Pm)} (48) 

We call Phx the distribution for hot excitations. In the state described by 
this distribution there are no dissipative processes, which are carried by the 
last term in Eq. (47). If relaxation processes can be neglected, e.g., if the 
rates of entropy flux between the subsystems involve relaxation times much 
larger than the characteristic time of the measurement being performed, 
then the hot excitation distribution describes the uniform quasi-steady state 
of the system. It corresponds to an equilibrium distribution constructed on 
the basis of (nearly) integrals of motion P,, with thermodynamically conjugate 
parameters F~. In most cases of interest the Pm are the Hamiltonians and 
particle numbers of each subsystem {H i, Ni}, and then the F m are the inverse 
quasi-temperatures and quasi-chemical potentials {fl~, -fl~#~}. The concepts 
of quasi-temperature and quasi-chemical potential for different internal 
degrees of freedom in quasiequilibrium have been applied to different 
experimental situations. 3 The generalization of the results of equilibrium 
statistics to the " h o t "  NESS is not difficult. In particular one can easily 
obtain the equivalent of the fluctuation-dissipation theorem as 

if (AiA~)o~ = ~ dz e-~(AiAj(Z))hx 

1 
= - -  d~ e-i~(Ai(z)Ai(i f l i ))bx = (AjAi) -co  e~'~ (49) 

2~ 

and 

Im((Ai;  AjIo)))(. TM = (1 + r/e P'~~ (50) 

where Ai is an operator that depends only on the coordinates of the ith 
subsystem. This result was used to study interference effects in Raman 
scattering in photoexcited semiconductors/TM 

3 For example, to electron and nuclear spins, (25a'25b) molecules, (25c) plasmas,  (25d'25e~ electrons 
excited in strong electric fields, 125r) and photoexcited electrons~2Sg~; also Ref. 25h. 
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The hot excitation model has been applied to the study of optical 
properties of solid state plasmas in doped or photoinjected semiconductors 
under high excitations. A review of this subject is given elsewhere. (27) 

The calculation of the transition probability rate of Eq. (45) does not 
simply reduce to the determination of the appropriate Green's functions, 
as is the case for samples initially in equilibrium, once the equation for 
the nonequilibrium thermodynamic Green's functions are not closed but 
coupled to the highly nonlinear kinetic equations (28), i.e., those describing 
the evolution of the NESS during the time it is probed. Such evolution is 
equivalently governed by the GTEq (25), which are equations of motion for 
correlation functions and therefore also admit a treatment using the Green's 
function formalism that opened this section. In fact, consider Pm = AB (for 
most practical cases B = A +) and then 

dQm( dtd (~_ ~d - <Pmlt> = i ~ 0 . ~  do) ( (A;  Bit, co>> u (51) 

where we have used the relation 

,f: de) G,(tlo9 + r = -"  de) JAB(tko) = --iFAB(t, 0) (52) 
oo  

The next section presents, as an example of the application of the 
method, a study of time-resolved laser-light scattering (Raman) spectroscopy. 

5. T I M E - R E S O L V E D  R A M A N  S P E C T R O S C O P Y  IN 
PHOTOEXCITED S E M I C O N D U C T O R S  

Important developments have recently occurred in the area of fast time- 
resolved spectroscopy, making it possible to investigate, on the picosecond 
time scale, the interaction of laser radiation with atoms, molecules, and 
condensed matter. (2s) Certainly this is a very useful measurement technique, 
which can provide an access to the detailed study of nonequilibrium processes 
in physics, chemistry, and biology. 

Here we apply the formalism developed in previous sections to the 
determination of the time-resolved Raman spectra of photoexcited electrons, 
at high excitation densities, and coupled to the system of longitudinal optical 
phonons in n-doped direct-gap polar semiconductors. The carrier system, 
which we assume initially departs strongly from thermal equilibrium due 
to a pulse of laser light, should be brought into a uniform internal 
thermalization within a fraction of a picosecond because of the Coulomb 
interactions (28'29) and from then on the conditions for the application of 
Zubarev's method are established. Further, we restrict the problem to 
situations when the carrier-phonon energy relaxation time is much shorter 
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than the relaxation times to the thermal bath, and the concentration of 
photoexcited pairs much smaller than the concentration of impurities. 

Under these conditions one can choose as a complete set of macro- 
variables the carrier energy HE and the LO-phonon number operator 
tli ~ = bK+b~. The quasiequilibrium statistical operator is then taken as 

p q ( t , O ) = e x p [ - ( ~ ( t ) - f i ( t ) H ~ - ~ F K ( t ) t l ~ ]  (53) 

where the nonequilibrium thermodynamic parameters are fi(t) and FK(t), 
with the LO-phonon wave vector K defined over the whole Brillouin zone. 
The usual model of  a parabolic conduction band semiconductor, dispersion- 
less LO phonons, and a bare Frohlich interaction between both systems 
is used. 

The differential time-resolved Raman scattering cross section for an 
event with energy transfer co = c o l -  C~ where col is the laser photon 
frequency and co s the scattered photon frequency, and momentum transfer 
q --= K L - Ks, is given by 

dZa(t/co) vZcos 2 
d ~  d ~  - 4n2C 4 Im ~ ( ( R  + ; RLt, co)) ,  (54) 

Here, V is the scattering volume and the scattering operator is 

e 2 2nhc 2 22 2 Ea z + col 2 ~, + 
R - Pvr @ (Tla.(eL x es)t+)CkTCk~. + H.C. (55) 

mc 2 Ve~coL rn EG 2 COL 2 

where eL,s are the polarization unit vectors of  the incident and scattered 
electric fields, Pvc is the matrix element of  the momentum operator between 
center-zone conduction and valence band states, E a is the energy gap, 
2 is the spin-orbit coupling constant, and the dipole approximation for the 
electron-radiation interaction has been used. This is the contribution to the 
scattering due to spin density fluctuations, whose observation can be 
separated from the contribution from charge density fluctuations by 
appropriate choice of  the scattering geometry, since they have Raman tensors 
with different symmetry. The latter, however much more intense, is not 
considered because plasmon effects strongly mask the quasiparticle band, 
the one more appropriate for the purposes of  this illustration. 

For  the sake of  brevity, we omit the lengthy but straightforward calcula- 
tion of the Green's functions of Eq. (54); suffice to say that the random 
phase approximation is used to deal with the Coulomb interaction between 
conduction band electrons, and that the lifetime of the carrier states is 
neglected. The final result is 

d 2 o  " _ ( d a a ~  

de) dn  \dco d n ] o  I~- ~(q' 
COlt)] 2 (56) 
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where 

(d2 a/dco d~)o = [ V[2(n/q Vth)e - ~2 

is the scattering cross section for the bare electrons, with V the p-independent 
matrix of the scattering potential; ~(t) = co/q Vth(t), and Vth(t ) -- [2/m*/~(t)] 1/2 
is the average thermal velocity, with m* the effective mass of electrons. 

Equation (56) shows that the scattering cross section for the independent 
carriers is corrected by a factor [p[-2 due to correlation effects, # being the 
RPA magnetic permeability 

#(q, colt) = 1 - fin[1 - ~(t)D(~)] + i2~zx/2fl(t)U~(t)e -~2 (57) 

where D(~) is the Dawson integral (3~ and U is the almost p-independent 
exchange integral/31) In deriving Eq. (57) we have used the Maxwell 
distribution 

f(p[t) = E41z3N/(2rcm*)3/2]f13/2(t) expE- fl(t)e(p)] (58) 

for the occupation number of electron states, since at the usual excitations 
the carrier fluid is nondegenerate during the time interval we are considering. 
Here e(p) = h2p2/2m *. 

Next we write down the GTEq for the macrovariables in order to close 
the problem, 

d ( g E l t ) q = i ~ % % , d  ((Cp+;Cvlt, co)) . (59a) 
dt . p p, 

~ d  b +  ddt (bk+bk]t)q = i ~ dt ( (  k ; bdt, co)) (59b) 

But because of Eq. (60) 

d d 
dr (Helt)q = ~ ~ epA(t) = -3nil-2(t)  d[3(t) (59a') 

dt 
P 

and we will use the mixed representation of Eqs. (59a') and (59b) to 
describe the evolution of the coupled electron-phonon system. 

The Green's functions of Eqs. (59) are calculated according to the basic 
equation (42), which of course leads us to an infinite system of Green's 
functions of ever-increasing order. We proceed to decouple the system to 
second order in the electron-phonon interaction to obtain a set of equations 
formally identical to those available in the literature for systems in 
equilibrium, ~4) except for the replacement of the carrier distribution functions 
by those of Eq. (58) and the phonon distribution function by vk(t)= 
(bk+bklt)q. Details as well as the solution of the coupled nonlinear GTEq 
(59) are given elsewhere/3z) Sufficient for the present purposes is the 
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knowledge of the reciprocal electron temperature/~(t), which is shown in the 
inset of Fig. 1 for the specific case of GaAs with a concentration of carriers 
of 3 x 1017 cm -3. The anti-Stokes contribution to the Raman spectra at 
different times after application of the initial pulse excitation is shown in 
Fig. 1 on a logarithmic scale. 

Excluding the region of low energy transfer (basically co < V~)q), where 
many-body effects built into the magnetic response function distort the 
spectrum, it mainly consists of  a straight line whose tangent co2/q z VtZh(t) gives 
a measure of the effective electron temperature/~-l( t ) ,  and thus one has a 
" thermometer"  to follow up the thermal evolution of the carriers. 
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Fig. 1. Cross section for time-resolved Doppler-Raman scattering by spin density fluctuations 
in n-doped direct-gap polar semiconductor. The inset shows the evolution of the effective 
temperature of the photoexcited carriers in contact with a reservoir of optical phonons. 
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We believe that this simple example illustrates the fundamentals of the 
method; more elaborate studies of the behavior of condensed matter under 
high excitation conditions, and probed by means of optical experiments or 
magnetic resonance experiments, are presently under way.  (33) 

In conclusion we may say that the response of a highly excited prepared 
sample can be described by means of the formalism presented in this work. 
It mainly consists in coupling the usual scattering theory with a method to 
deal with nonequilibrium statistical mechanics. This has been done using 
Zubarev's method, which provides a contracted description of the state of the 
system in terms of a small number of macroscopic variables, following a 
Gibbsian-like approach. The present formalism provides a response function 
for a measurement operation involving characteristic time intervals much 
larger than the relaxation time for microprocesses, ~v) after which a description 
of the macroscopic state of the system is given by the coarse-grained 
distribution described in Section 3. In this way, it is a generalization of the 
Kubo formalism (3) given the linear and nonlinear responses of the system 
in terms of correlation functions calculated not in equilibrium but in the 
nonequilibrium state defined by the distribution ;of(t). Thus, it describes the 
effect of the mechanical perturbation on a system which is evolving in an 
irreversible way governed by the generalized transport equations (25). 

Finally the possibility should also be mentioned of the stabilization of 
spatial steady-state dissipative structures in the nonlinear thermodynamic 
regime in highly excited semiconductors. Convection instability (B6nard-like 
effect) in the hot electron gas in semiconductors has been considered by 
Bonch-Bruevich, (34) and in the photogenerated electron-hole plasma by 
Kerner and Osipov/35) Nonlinear instabilities are also responsible for self- 
organized inhomogeneous steady states of currents and fields in semi- 
conductor devices. (36) Formation of a superlattice in polar semiconductors 
under strong infrared light irradiation has been suggested. (37) This question 
of symmetry breaking at branching points of the solutions of nonlinear 
generalized kinetic equations [e.g., Eq. (25) or (28)] with accompanying 
coherent behavior ~2 ~) constitutes a quite engaging and challenging problem, 
which doubtless will generate mounting interest in coming years. 

APPENDIX.  PROJECTORS, M E M O R Y  FUNCTION, AND 
ZUBAREV'S METHOD 

We show here that Zubarev's method can be connected with a projection 
operator technique in a form that resembles an extension to nonlinear 
nonequilibrium conditions of the Mori formalism/16) 

Consider the set of quantities e l ,  P2 ..... Ps chosen for the contracted 
description of the macroscopic state of the system. To them we add the 
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unity operator Po = 1. The nonequilibrium thermodynamic parameters are 
F 1 (t),..., Fs(t), and Fo(t ) = q~(t) is the conjugate to P0. The entropy operator is 
S(t, 0 ) =  Y~,=o F,,(t)P,,, and the QESD and Zubarev's NESS are given by 
Eqs. (18) and (19). The latter can be rewritten, after integration by parts, as 

p~(t) exp[ -S( t ,  0) + ~E(t, 0)] = pq(t, O) + p'(t, 0) (A1) 

where 

f _  S(t + t', t') (A2) 
d 

~,(t, O) = dt' e et" A dr-" 
ct~ 

p'(t, O) = D~(t, O)p,(t, 0) (A3) 

D~(t, O) = dt' e ~' du Y(~lu)e-"S(e us (A4) 
oO 

with the operator Y defined by the integral equation 

fx Y(~lx) = 1 + du I/(([u)e-uS(e ~s (A5) 
o 

The NESS (A1) is composed of two additive parts, the local equilibrium 
distribution pq and a term that accounts for the relaxation effects to all 
orders in the thermodynamic forces. We restrict the following analysis to 
the linear relaxation approximation around the quasiequilibrium state, i.e., 
the first-order expansion in the operator (, by putting Y = 1 in the previous 
equations. 

Next we define a metric space of vectors Pm with the inner product 

(Pm[P.; t) =- Mm.(t ) = f~  du Sp{Pme-~Sp.e"Spq(t, 0)} (A6) 

which is a correlation function of the quantities P,. and P., and M is the 
correlation matrix. 

Definition (A6) allow us to introduce the operator 

~( t )A = ~, PmM~,n'(t)(P.tA; t) (A7) 
?ti l l  

with the properties of linearity, hermiticity, and idempotency, which projects 
the logarithm of the Zubarev NESS (A1) over the entropy operator S(t, 0). 
In f a c t  

- ~ ( t )  In p.(t) = ~ PmM~.I(t)(P,.[[S(t, 0) - ~,(t, 0)3; t) = S(t, O) 
?r i f t  

where we used definition (21), which tells us that (Pm[~; t) = 0. 

(A8) 
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Given the operator Pro(Z) = Pm ei~f, where 5(' is the Liouvillian operator 
of the system, and using the identity 5q = L,r + Q), where Q = 1 - .~, we 
can write the exact equation of motion for Pro(v) in the alternative 
generalized Langevin equation form 

i P~(z) = ~ ff~m,(t)P,(z) - i ~ dz' r,..(~ - ~'lt)e.lv') +f,,(z[t) (A9) 
t l  

where 

~m,(t) = i ~ (P,,IPt; t )M~ ~(t) (A10a) 
l 

= i Z ([~mlQei'~ t)MT, 1(0 (A10b) 
! 

fro(tit) = i[~,,Qei'~ (A10c) 

Equation (A9) contains three terms on the rhs: (a) a precession term, 
(b) a memory term, and (c) a driving force. The latter is uncorrelated to 
the variables P,,, i.e., [f,.(zlt)lP,,; t] = 0, has null average value over the 
quasiequilibrium ensemble, and satisfies 

[fm(Z[t)lf,(OIt); t] = F,,,(zlt) (A11) 

which is a generalization of the fluctuation-dissipation theorem connecting 
correlations to the memory function. The inner product of Eq. (A9) with 
P, produces the equations for the correlation matrix elements; the average 
over the Zubarev nonequilibrium ensemble followed by the limit of z going 
to zero reproduces Eq. (25); and taking the canonical equilibrium distribution 
for pq, one fully retrieves Mori's results. This suggests that Zubarev's method 
may be considered as a generalization of Mori's method, providing a very 
practical way for dealing with nonlinear effects in far-from-equilibrium 
statistical systems, 
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